amplifier

Using the Library Manager of TINA, Part 1: Adding a Simple 5 terminal Operational Amplifier to the Library now with English voice over

TINA has large libraries containing Spice models provided by semiconductor manufacturers such as Analog Devices, Texas Instruments and more.
You can add more models to these libraries or create your own Spice library using TINA’s Library Manager (LM).

Watch our tutorial video to see how to add a Spice model to TINA’s Spice libraries.

UsingtheLibraryManagerofTINApart1voiceover-blog

Download the FREE trial demo of TINA Design Suite and get:

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Michael Koltai
www.tina.com

 

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Creating Subcircuits from Spice Netlists, Part 1: Simple 5-terminal Operational Amplifiers now with English voice over

In TINA you can create your own components from any Spice subcircuit that you have made or downloaded from the Internet.

Watch our tutorial video  to see how to create an UA741 Operational Amplifier model using a     Spice Subcircuit in TINA:

 creatingsubcircuitspart1-voiceover-blog

Download the FREE trial demo of TINA Design Suite and get:

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Shunt Amplifier with Offset Output

By reducing the +12V common- mode voltage, an INA122 can sense the voltage drop across a shunt resistor while being powered by the same +12V power supply.  Rg controls the voltage gain of U1. This circuit is scaled for a 2.5V output range centered around +1.25V; thus this amplifier can measure bidirectional shunt current. An INA122 does not feature a R-R output so the sinking current is limited to about -0.3A. This can be useful where battery current must be monitored while it is being charged or discharged. Bypass capacitors are not shown. (Circuit is created by Tucson)

Shunt Amplifier with Offset Output circuit:

 Shunt amplifier with offset output

Online Simulation of a Shunt Amplifier with Offset Output Circuit:

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Single-Ended Input Differential Output Amplifier

A DRV134 converts a single- ended input signal to a differential output. Differential output is used to drive the inputs of some A/D converters and to drive tristed- pair or Twinax transmission lines in a high- noise environment. An INA137 or INA137 can be used as a differential line receiver to convert the differential voltage back to single- ended. In AC- only applications such as audio, capacitors can be inserted between the outputs and their respective sense pins to reduce the DRV134 output DC offset. See the data sheet for details. Bypass capacitors have been omitted in this schematic but their use is recommended. (Circuit is created by Neil P. Albaugh, TI- Tucson )

Single-Ended Input Differential Output Amplifier  Circuit:

single ended diff opamp

Online Simulation of a Single-Ended Input Differential Output Amplifier  Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Very Low DC Offset Wideband Amplifier

The OPA380 is an integrator- stabilized operational amplifier that was developed primarily for transimpedance amplifier applications. Its inverting input is that a 90MHz CMOS op amp but its non-inverting input is an integrator non-inverting input, allowing only very low frequency response through this input. In most dual- supply applications, the OPA380 non- inverting input is simply tied to ground. In single- supply applications, it can be used to provide a DC offset. By adding an input resistor, R1, a transimpedance amplifier is transformed into a conventional inverting amplifier. The usual op amp inverting gain equation  applies: Av = – (R2/R1) in V/V. The OPA380 is input offset voltage is specified as 4uV typical, 25uV maximum @ 25C, drift is 0.03uV/C typ, 0.1uV/C max.  (Circuit is created by Neil P. Albaugh  TI- Tucson)

 Very Low DC Offset Wideband Amplifier circuit:

 Low vos wideband amplifier

Online Simulation of the Very Low DC Offset Wideband Amplifier Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Wideband 75MHz 28dB Gain Amplifier

This Wideband 75MHz 28dB Gain Amplifier circuit is based on two OPA355 gain stages in cascade. The dual version, OPA2355, can also be used. An OPA355 achieves low input bias current,
+/-50pA MAZ, low voltage noise, 5.8nV/sq-rt Hz typical @ 1MHz, and it has good gain-bandwidth, 200MHz, and high slew rate, 300V/us. To maximize bandwidth in a 2-stage amplifier, each stage should be set to a gain of the square- root of the total cascaded amplifier gain. A triple op amp, OPA3355 can be cascaded to provide even higher BW at the same gain. (Created by Neil P. Albaugh  TI- Tucson)

Wideband amplifier circuit:

wideband amplifier-blog

Online Simulation of the “Wideband 75MHz 28dB Gain Amplifier” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Speech Compression Amplifier With Linear Gain = 20V/V

Compression amplifiers are frequently used to prevent overmodulation of AM transmitters. This prevents the creation of spurious modulation products called “splatter”. The “soft knee” of the transfer curve also imparts a “vacuum tube- like” sound to audio signals and musical instruments. The brightness of the LEDs indicate the degree of compression.  Bypass capacitors are not shown. (Circuit is created by Neil P. Albaugh,  TI-Tucson)

Speech Compression Amplifier With  Linear Gain = 20V/V circuit:

 

Speech Compression Amplifier-blog

Online Simulation of the “Speech Compression Amplifier With  Linear Gain = 20V/V” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Bridge Sensor Amplifier With RFI Filter

This high accuracy bridge sensor amplifier is based on the autozero INA326 instrumentation amplifier. Bridge sensors are commonly found in pressure transducers, weigh scales, strain guages, and load cells. As shown, the amplifier gain is 200V/V. Capacitors C1 & C2 form a 2nd order 1kHz low- pass filter to reduce noise. The INA326 is virtually free of 1/f noise. R8 & R9 together with C4, C5, & C6 form an RFI filter. For best filtering, make R8 = R9 and C5 = C6 as close as possible. C4 = C5 * 10. In battery- operated applications, an INA327 with shutdown is recommended. For operation over -40C to +125C, use an INA337. (Circuit is created by Neil P. Albaugh,  TI-Tucson)

The “Bridge Sensor Amplifier With RFI Filter” circuit:

bridge sensor amplifier with RFI filter blog

Online Simulation of the “Bridge Sensor Amplifier With RFI Filter” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

INA154 With Gain-Current Shunt Amplifier

By converting the difference amplifier output to a current source using R2, voltage gain can be achieved with R3. R2 compensates the current sensing resistor R2 and increases the current source output impedance. Resistor R5 compensates for the current shunt resistance R4. Perfect compensation for R4 is not possible since the INA154’s internal resistor network is trimmed for precise ratios rather than absolute  values. A buffer amplifier should be used on the output to prevent gain (loading) error. Bypass capacitors are not shown.  (Circuit is created by Neil P. Albaugh,  TI-Tucson)

INA154 With Gain-Current Shunt Amplifier circuit:

INA-154 with Gain Current Shunt Amplifier-blog

Online Simulation of the “INA154 With Gain-Current Shunt Amplifier” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Single Supply Absolute Value Amplifier (2)

The rail- to- rail input and output characteristics of these CMOS op amps allow them to swing very close to their supply rails–+5V and ground. By forcing U1 to operate as an inverting amplifier when the input voltage is negative (by the “ideal clamp” circuit of U2 and D1) and allowing it to operate as a normal noninverting amplifier when the input voltage is positive, op amp U1 acts like a perfect rectifier. This design can be biased above ground, handy in single supply circuits referenced to V+/2. This absolute value amplifier has unity gain an input range of within a few mV of -5V to +5V. For a faster amplifier, use an OPA354 for U1 & U2 and a small Schottky diode for D1. The dual amplifier versions, OPA2364 or OPA2354 can also be used. (Circuit is created by David Jones & Neil P. Albaugh,  TI- Tucson)
Single Supply Absolute Value Amplifier (2) circuit:
Absolute-value amplifier single-supply 2-blog

Online Simulation of the “Single Supply Absolute Value Amplifier (2)” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS