voltage

Voltage-Controlled Current Source Circuit

This circuit is a Howland voltage-controlled current source. It is scaled to provide a 20mA output current with a +1V input voltage. This type of current source can be very useful in industrial applications. A R-R output op amp with an input common-mode range that includes its negative supply rail, such as an OPA251, is required for single- supply operation. For V+ supply over 12V, use Zetex ZXTN2010G (60V, 3W, SOT223, HFE = 100 min). Re- scaling this circuit with other transistors can result in output current capability of a many amps. (Circuit is created by Neil P. Albaugh,  TI – Tucson)

Voltage-Controlled Current Source Circuit:

Voltage-controlled current source circuit-blog

Online Simulation of the “Voltage-Controlled Current Source” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Voltage-Controlled Electronic Load

This circuit is a voltage- controlled current sink. It is scaled to provide a 500mA output current with a +1V input voltage. This type of current sink can be very useful in power supply testing applications. A R-R output op amp with an input common-mode range that includes its negative supply rail, such as an OPA251, is required for single- supply operation. Re- scaling this circuit with other Darlington transistors or low- threshold N-channel MOSFETs can result in an output current sink capability of many amps. (Circuit is created by Neil P. Albaugh,  TI – Tucson)

Voltage-Controlled Electronic Load circuit:

voltage-contolled electronic load-blog

 

Online Simulation of the Voltage-Controlled Electronic Load Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Universal Voltage Reference

“This universal voltage reference circuit”- can provide a reference voltage that is continuously adjustable between -10V and +10V. If a REF02 is substituted for the  REF102 shown here, the output range will be -5V to +5V.The circuit uses both an op amp inverting gain path and a non- inverting  gain path simultaneously.  A potentiometer controls the ratio of these two gain paths. With the potentiometer wiper arm grounded,  U1 operates as an ordinary inverting amplifier with a gain of -1V/V. When the wiper arm is rotated to the other end of the potentiometer,  however, there is an additional gain path of +2V/V in addition to the -1V/V path. The resulting sum is a gain of +1V/V. At 50% rotation  (the wiper arm is exactly centered) the non- inverting gain path drops to +1V/V— cancelling the -1V/V gain entirely.  The output is then 0V. P1 should be a good quality potentiometer with high resolution and a good temperature coefficient.  Fortunately, the TC match of the resistance ratios of a potentiometer is much lower than its absolute resistance TC. (Circuit is created by Neil P. Albaugh  TI- Tucson)
  universal voltage reference for blog

Universal Voltage Reference

Online Simulation of the Universal Voltage Reference Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit.

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS