NODE POTENCIÁLIS ÉS MESH CURRENT MÓDSZER AC ACIRCUITS-ban

A TINACloud meghívásához kattintson az alábbiakra vagy érintse meg az alábbi példa áramköröket, és válassza ki az Interaktív DC módot az online elemzéshez.
Találjon alacsony költségű hozzáférést a TINACloudhoz a példák szerkesztéséhez vagy saját áramkörök létrehozásához

Az előző fejezetben láttuk, hogy Kirchhoff törvényeinek használata az áramkör-elemzéshez nemcsak sok egyenletet eredményez (akárcsak az egyenáramú áramkörök esetében), hanem (a komplex számok miatt) megduplázza az ismeretlenek számát. Az egyenletek és ismeretlenek számának csökkentésére két másik módszert alkalmazhatunk: a csomópontpotenciál és a háló (hurok) áram mód. Az egyetlen különbség az egyenáramú áramkörektől az, hogy váltakozó áramú esetben együtt kell dolgozni komplex impedanciák (vagy befogadások) a passzív elemek és a komplex csúcs vagy effektív (rms) értékek a feszültségekre és az áramokra.

Ebben a fejezetben ezeket a módszereket két példával mutatjuk be.

Először mutassuk be a csomópontpotenciál módszer használatát.

Példa 1

Keresse meg az i (t) áram amplitúdóját és fázisszöget, ha R = 5 ohm; L = 2 mH; C1 = 10 mF; C2 = 20 mF; f = 1 kHz; vS(t) = 10 cos wt V és iS(t) = cos wt A


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez

Itt csak egy független csomópontunk van, N1 ismeretlen potenciállal rendelkezik: j = vR = vL = vC2 = vIS . A legjobb módszer a csomópontpotenciál módszer.

A csomópont egyenlet:

expressz jM az egyenletből:

Most kiszámíthatjuk az I-tM (az i (t) áram komplex amplitúdója):

A

Az áram időfüggvénye:

azt) = 0.3038 cos (wt + 86.3°) A

A TINA használata


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez

{TINA tolmácsának megoldása}
om: = 2000 * pi;
V: = 10;
Van: = 1;
Sys fi
(Fi-V) * j * om * C1 + fi * j * om * C2 + fi / j / om / L + fi / R1-Is = 0
end;
I: = (V-fi) * j * om * C1;
abs (I) = [303.7892m]
radtodeg (ARC (I)) = [86.1709]

Most egy példa a hálóáram módszerére


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez

Példa 2

Keresse meg a feszültséggenerátor áramát V = 10 V, f = 1 kHz, R = 4 kohm, R2 = 2 kohm, C = 250 nF, L = 0.5 H, I = 10 mA, vS(t) = V cosw t, iS(t) = bűnös vagyokw t

Noha a csomópontpotenciál módszerét ismét csak egy ismeretlennel tudnánk használni, a megoldást a következővel mutatjuk be a hálóáram-módszer.

Számítsuk ki először R egyenértékű impedanciáit2, L (Z1) és R, C (Z2) a munka egyszerűsítése:


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez


Két független hálónk van (hurok). Az első: vS, Z1 és Z2 és a második: iS és Z2. A hálóáramok iránya: I1 óramutató járásával megegyező irányban, I2 óramutató járásával ellentétes irányban.

A két háló egyenlet: VS = J1* (Z1 + Z2) + J2*Z2 J2 = Is

Minden impedancia, feszültség és áram esetén komplex értékeket kell használnia.

A két forrás: VS = 10 V; IS = -j * 0.01 A.

Kiszámoljuk a feszültséget voltban és az impedanciát kohmban, így mA-ban kapjuk az áramot.

Ennélfogva:

j1(t) = 10.5 cos (w ×t -7.1°) mA

Megoldás a TINA-tól:

{TINA tolmácsának megoldása}
Vs: = 10;
Van: = - j * 0.01;
om: = 2000 * pi;
Z1: = R2 * j * om * L / (R2 + j * om * L);
Z2: = R / (1 + j * om * R * C);
Sys I
Vs = I * (Z1 + Z2) + A * Z2
end;
I = [10.406m-1.3003m * j]
abs (I) = [10.487m]
radtodeg (ARC (I)) = [- 7.1224]

Végül ellenőrizzük az eredményeket a TINA segítségével.


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez


    X
    Örülök, hogy itt vagy Cégünk a DesignSoft Kft.
    Lehetővé teszi a csevegést, ha segítségre van szüksége a megfelelő termék megtalálásához vagy támogatásra.
    a wpchatıco