Szuperpozíció az AC áramkörökben

A TINACloud meghívásához kattintson az alábbiakra vagy érintse meg az alábbi példa áramköröket, és válassza ki az Interaktív DC módot az online elemzéshez.
Találjon alacsony költségű hozzáférést a TINACloudhoz a példák szerkesztéséhez vagy saját áramkörök létrehozásához

Az egyenáramú áramkörök szuperpozíciós tételét már megvizsgáltuk. Ebben a fejezetben bemutatjuk annak alkalmazását váltakozó áramú áramkörökben.

Aszuperpozíció tétel kijelenti, hogy több forrású lineáris áramkörben az áramkör bármely elemének árama és feszültsége az egyes források által egymástól függetlenül működő áramok és feszültségek összege. A tétel bármely lineáris áramkörre érvényes. A szuperpozíció AC-áramkörökhöz való felhasználásának legjobb módja az egyes források egyenként alkalmazott összetett effektív vagy csúcsértékének kiszámítása, majd az összetett értékek hozzáadása. Ez sokkal könnyebb, mint az időfüggvényekkel történő szuperpozíció használata, ahol hozzá kell adni az egyes időfüggvényeket.

Az egyes források hozzájárulásának független kiszámításához az összes többi forrást el kell távolítani és ki kell cserélni a végső eredmény befolyásolása nélkül.

A feszültségforrás eltávolításakor a feszültséget nullára kell állítani, ami megegyezik a feszültségforrás rövidzárral történő cseréjével.

Egy áramforrás eltávolításakor az áramot nullára kell állítani, ami megegyezik az áramforrás nyitott áramkörre történő cseréjével.

Most fedezzünk fel egy példát.

Az alább bemutatott áramkörben

Ri = 100 ohm, R1= 20 ohm, R2 = 12 ohm, L = 10 uH, C = 0.3 nF, vS(T) = 50cos (wt) V, iS(T) = 1cos (wt + 30 °) A, f = 400 kHz.

Vegye figyelembe, hogy mindkét forrás azonos frekvenciájú: Ebben a fejezetben csak az azonos frekvenciájú forrásokkal fogunk dolgozni. Ellenkező esetben a szuperpozíciót másképp kell kezelni.

Keresse meg az i (t) és i áramokat1(t) a szuperpozíció tétel felhasználásával.


Kattintson az / áramkörre a fenti áramkörre az on-line elemzéshez, vagy kattintson erre a hivatkozásra a Windows alatt mentéshez

Használjuk párhuzamosan a TINA és a kézi számításokat a probléma megoldására.

Először cserélje ki az áramforrás nyitott áramkörét és számítsa ki az összetett párakat I ', I1' a hozzájárulás miatt csak VS.

Az áramok ebben az esetben megegyeznek:

I'= I1'= VS/ (Ri + R1 + j* w* L) = 50 / (120+j2* p* * 4 105* 10-5) = 0.3992-j0.0836

I'= 0.408 ej 11.83 °A

Ezután cserélje ki a rövidzárlatot a feszültségforrásra és számítsa ki az összetett párakat I ”, I1” a hozzájárulás miatt csak IS.

Ebben az esetben a jelenlegi osztási képletet használhatjuk:

I ”= -0.091 - j 0.246 A

I1" = 0.7749 + j 0.2545 A

A két lépés összege:

I = I'+ I”= 0.3082 - j 0.3286 = 0.451 e- j46.9 °A

I1 = I1" + I1'= 1.174 + j 0.1709 = 1.1865 ej 8.28 °A

Ezek az eredmények jól megfelelnek a TINA által kiszámított értékeknek:

Az áramok időfüggvényei:

i (t) = 0.451 cos ( w × t - 46.9 ° )A

i1(t) = 1.1865 cos ( w × t + 8.3 ° )A

Hasonlóképpen a TINA tolmácsának eredményei is egyetértenek:
{TINA tolmácsának megoldása}
f: = 400000;
Vs: = 50;
IG: = 1 * exp (j * pi / 6);
om: = 2 * pi * f;
sys I, I1
I + IG = I1
Vs = I * Ri + I1 * (R1 + j * om * L)
end;
I = [308.093m-329.2401m * j]
abs (I) = [450.9106m]
radtodeg (ARC (I)) = [- 46.9004]
abs (I1) = [1.1865]
radtodeg (ív (I1)) = [8.2749]

Amint azt a szuperpozícióról szóló DC fejezetben elmondtuk, meglehetősen bonyolult lesz, ha a kettőnél több forrást tartalmazó áramköröknél alkalmazzuk a szuperpozíciót. Noha a szuperpozíció tétel hasznos lehet az egyszerű gyakorlati problémák megoldásában, fő célja az áramkör-elemzés elmélete, ahol más tételek bizonyítására alkalmazzák.


    X
    Üdvözöljük a Cégünk a DesignSoft Kft.
    Lehetővé teszi a csevegést, ha segítségre van szüksége a megfelelő termék megtalálásához vagy támogatásra.
    a wpchatıco