Импеданстар ЖАНА кабыл ПАЙДАЛАНУУ

TINACloud Click же дуба үчүн төмөнкү мисал тетиктерге таптап, Online, аларды анализдөө үчүн Interactive DC режимин тандоо.
мисалдарды түзөтүп же өз схемаларды түзүү TINACloud үчүн арзан кирүү

As we saw in the previous chapter, impedance and admittance can be manipulated using the same rules as are used for DC circuits. In this chapter we will demonstrate these rules by calculating total or equivalent impedance for series, parallel and series-parallel AC circuits.

мисал 1

Find the equivalent impedance of the following circuit:

R = 12 ohm, L = 10 mH, f = 159 Hz


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,

The elements are in series, so we realise that their complex impedances should be added:

Zeq = ZR + ZL = R + j w L = 12 + j* 2 *p* * 159 0.01 = (12 + j 9.99) ohm = 15.6 ej39.8° Ohm.

Yeq = 1 /Zeq = 0.064 д- j 39.8° S = 0.0492 - j 0.0409 S

We can illustrate this result using impedance meters and the Phasor Diagram in
TINA v6. Since TINA’s impedance meter is an active device and we are going to use two of them, we must arrange the circuit so that the meters don’t influence each other.
We have created another circuit just for the measurement of the part impedances. In this circuit, the two meters do not “see” each other’s impedance.

The Analysis/AC Analysis/Phasor diagram command will draw the three phasors on one diagram. We used the Auto этикеткасы command to add the values and the сызык command of the Diagram Editor to add the dashed auxiliary lines for the parallelogram rule.

The circuit for measuring the impedances of the parts

Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,


Z куруу көрсөтүү Phasor диаграммаeq with the parallelogram rule


As the diagram shows, the total impedance, Z.ж, татаал пайда багыты аркылуу алынган катары кароого болот parallelogram rule татаал күчөткүчтөр чейин ZR жана ZL .

мисал 2

Find the equivalent impedance and admittance of this parallel circuit:


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,


R = 20 Ohm, C = 5 mF, F = 20 KHz

The admittance:

колдонуу импеданстар ZЧонбури= Z1 Z2 / (Z1 + Z2 ) параллелдүү күчөткүчтөр үчүн формула:

Check your calculations using TINA’s Analysis menu Calculate nodal voltages. When you click on the Impedance meter, TINA presents both the impedance and admittance and gives the results in algebraic and exponential forms.

ТИНА бул маселени чече алабы дагы бир жолу анын котормочусу менен:

{TINAнын котормочусунун чечими}
Эштон: = 2 * пи * 20000;
Z: = Replus (R, (1 / J / НП / C))
Z = [125.8545m-1.5815 * к]
Y: = 1 / R + J * ом * C;
Y = [50m + 628.3185m * к]
#Python аркылуу чечим!
математиканы м катары импорттоо
c катары импорт cmath
#First lambda аркылуу кошумчаны аныктаңыз:
Replus= lambda R1, R2 : R1*R2/(R1+R2)
#Комплекстин басып чыгаруусун жөнөкөйлөштүрүү
Ачык-айкындуулук үчүн #сандар:
cp= lambda Z : “{:.4f}”.format(Z)
om=2*c.pi*20000
Z=Replus(R,1/татаал(0,1/om/C))
басып чыгаруу(“Z=”,cp(Z))
Y=татаал(1/R,om*C)
басып чыгаруу("Y=",cp(Y))

мисал 3

Find the equivalent impedance of this parallel circuit. It uses the same elements as in Example 1:
R = 12 Ohm жана L = 10 М.Х., п = 159 Hz жыштыгы.

For parallel circuits, it’s often easier to calculate the admittance first:

Yeq = YR + YL = 1 / R + 1 / (j*2*p*е * L) = 1 / 12 - j /10 = 0.0833 – j 0.1 = 0.13 д-j 50° S

Zeq = 1 / Yeq = 7.68 e j 50° Ohm.


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,

Another way TINA can solve this problem is with its Interpreter:

{TINAнын котормочусунун чечими}
е: = 159;
Эштон: = 2 * пи * е;
Zeq: = replus (R, J * ом * L);
Zeq = [4.9124 + 5.9006 * к]
#Python аркылуу чечим!
математиканы м катары импорттоо
c катары импорт cmath
#First lambda аркылуу кошумчаны аныктаңыз:
Replus= lambda R1, R2 : R1*R2/(R1+R2)
#Комплекстин басып чыгаруусун жөнөкөйлөштүрүү
Ачык-айкындуулук үчүн #сандар:
cp= lambda Z : “{:.4f}”.format(Z)
F = 159
om=2*c.pi*f
Zeq=Replus(R,татаал(1j*om*L))
print(“Zeq=”,cp(Zeq))

мисал 4

Find the impedance of a series circuit with R = 10 ohm, C = 4 mF, жана L = 0.3 М.Х., бурчтук жыштыгы w = 50 krad / с (f = w / 2p = 7.957 KHz).

Z = R + j w L - j / wC = 10 + j 5*104 * * 3 10-4 - j / (5 * 104 * * 4 10-6 ) = 10 + j 15 - j 5


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,



Z = (10 + j 10) ohm = 14.14 дj 45° OHMS.

The circuit for measuring the impedances of the parts

Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,


Тина тарабынан түзүлгөн катары phasor диаграмма

Starting with the phasor diagram above, let’s use the triangle or geometric construction rule to find the equivalent impedance. We start by moving the tail of ZR учунан ZL. Ошондо биз, куйрук түрткү ZC учунан ZR. Now the resultant Zeq will exactly close the polygon starting from the tail of the first ZR phasor жана учундагы бүтөт ZC.

The phasor diagram showing the geometric construction of Zeq

{TINAнын котормочусунун чечими}
Эштон: = 50k;
ZR: = R;
ZL: OM * L =;
Ана: = 1 / НП / C;
Z: = ZR + J * ZL-J * ZC;
Z = [10 + 10 * к]
ABS (Z) = [14.1421]
radtodeg (жаа (Z)) = [45]
{башка жол}
Zeq: = R + J * ом * L + 1 / J / НП / C;
Zeq = [10 + 10 * к]
ABS (Zeq) = [14.1421]
Fi: = жаасы (Z) * 180 / Pi;
Fi = [45]
#Python аркылуу чечим!
математиканы м катары импорттоо
c катары импорт cmath
#Комплекстин басып чыгаруусун жөнөкөйлөштүрүү
Ачык-айкындуулук үчүн #сандар:
cp= lambda Z : “{:.4f}”.format(Z)
om=50000
ZR=R
ZL=om*L
ZC=1/om/C
Z=ZR+1j*ZL-1j*ZC
басып чыгаруу(“Z=”,cp(Z))
print(“abs(Z)= %.4f”%abs(Z))
print(“даража(жага(Z))= %.4f”%m.градус(c.phase(Z)))
#башка жол
Zeq=R+1j*om*L+1/1j/om/C
print(“Zeq=”,cp(Zeq))
print(“abs(Zeq)= %.4f”%abs(Zeq))
fi=c.phase(Z)*180/c.pi
print(“fi=”,cp(fi))

Check your calculations using TINA’s Analysis menu Calculate nodal voltages. When you click on the Impedance meter, TINA presents both the impedance and admittance, and gives the results in algebraic and exponential forms.

Since the circuit’s impedance has a positive phase like an inductor, we can call it an тыянак райондук–at least at this frequency!

мисал 5

Find a simpler series network that could replace the series circuit of example 4 (at the given frequency).

We noted in Example 4 that the network is тыянак, so we can replace it by a 4 ohm resistor and a 10 ohm inductive reactance in series:

XL = 10 = w* L = 50 * 103 L

® L = 0.2 М.Х.


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,


Don’t forget that, since inductive reactance depends upon frequency, this equivalence is valid only for бир жыштык.

мисал 6

Find the impedance of three components connected in parallel: R = 4 ohm, C = 4 mF, жана L = 0.3 mH, at an angular frequency w = 50 krad / с (= е w / 2p = 7.947 KHz).


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,


Noting that this is a parallel circuit, we solve first for the admittance:

1/Z = 1 / R + 1 / j w L + jwC = 0.25 - j/15 +j0.2 = 0.25 +j 0.1333

Z = 1 / (0.25 + j 0.133) = (0.25 - j 0.133)/0.0802 = 3.11 – j 1.65 = 3.5238 д-j 28.1° OHMS.

{TINAнын котормочусунун чечими}
Эштон: = 50k;
ZR: = R;
ZL: OM * L =;
Ана: = 1 / НП / C;
Z: = 1 / (1 / R + 1 / J / ZL-1 / J / Ана);
Z = [3.1142-1.6609 * к]
ABS (Z) = [3.5294]
Fi: = radtodeg (жаасы (Z));
Fi = [- 28.0725]
#Python аркылуу чечим!
математиканы м катары импорттоо
c катары импорт cmath
#Комплекстин басып чыгаруусун жөнөкөйлөштүрүү
Ачык-айкындуулук үчүн #сандар:
cp= lambda Z : “{:.4f}”.format(Z)
#Лямбда аркылуу кошумчаны аныктаңыз:
Replus= lambda R1, R2 : R1*R2/(R1+R2)
om=50000
ZR=R
ZL=om*L
ZC=1/om/C
Z=1/(1/R+1/1j/ZL-1/1j/ZC)
басып чыгаруу(“Z=”,cp(Z))
print(“abs(Z)= %.4f”%abs(Z))
fi=m.градус(c.phase(Z))
print(“fi= %.4f”%fi)
#башка жол
Zeq=Replus(R,Replus(1j*om*L,1/1j/om/C))
print(“Zeq=”,cp(Zeq))
print(“abs(Zeq)= %.4f”%abs(Zeq))
print(“degrees(arc(Zeq))= %.4f”%m.degrees(c.phase(Zeq)))

The Interpreter calculates phase in radians. If you want phase in degrees, you can convert from radians to degrees by multiplying by 180 and dividing by p. In this last example, you see a simpler way—use the Interpreter’s built in function, radtodeg. There is an inverse function as well, degtorad. Note that this network’s impedance has a negative phase like a capacitor, so we say that—at this frequency—it is a емкостный райондук.

In Example 4 we placed three passive components in series, while in this example we placed the same three elements in parallel. Comparing the equivalent impedances calculated at the same frequency, reveals that they are totally different, even their inductive or capacitive character.

мисал 7

Find a simple series network that could replace the parallel circuit of example 6 (at the given frequency).

This network is capacitive because of the negative phase, so we try to replace it with a series connection of a resistor and a capacitor:

Zeq = (3.11 - j 1.66) Ohm = Re -j / wCe


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,

Re = 3.11 Ohm w* C = 1 / 1.66 = 0.6024

демек,

Re = 3.11 Ohm
C = 12.048
mF

You could, of course, replace the parallel circuit with a simpler parallel circuit in both examples

мисал 8

Find the equivalent impedance of the following more complicated circuit at frequency f=50 Hz:


Click / сапта-талдоо Жогоруда кыдырып таптап же Windows ылайык сактоо үчүн бул шилтемени басып,

{TINA котормочусунун чечими}
Эштон: = 2 * пи * 50;
Z1: = R3 + J * ом * L3;
Z2: = replus (R2,1 / J / НП / C);
Zeq: = R1 + Replus (Z1, Z2);
Zeq = [55.469-34.4532 * к]
ABS (Zeq) = [65.2981]
radtodeg (жаа (Zeq)) = [- 31.8455]
#Python аркылуу чечим!
математиканы м катары импорттоо
c катары импорт cmath
#Комплекстин басып чыгаруусун жөнөкөйлөштүрүү
Ачык-айкындуулук үчүн #сандар:
cp= lambda Z : “{:.4f}”.format(Z)
#Лямбда аркылуу кошумчаны аныктаңыз:
Replus= lambda R1, R2 : R1*R2/(R1+R2)
om=2*c.pi*50
Z1=R3+1j*om*L3
Z2=Replus(R2,1/1j/om/C)
Zeq=R1+Replus(Z1,Z2)
print(“Zeq=”,cp(Zeq))
print(“abs(Zeq)= %.4f”%abs(Zeq))
print(“degrees(arc(Zeq))= %.4f”%m.degrees(c.phase(Zeq)))

We need a strategy before we begin. First we’ll reduce C and R2 to an equivalent impedance, ZRC. Андан кийин, бул Корган көрүпRC is in parallel with the series-connected L3 and R3, we’ll compute the equivalent impedance of their parallel connection, Z2. Акыр-аягы, биз Корган эсептепeq Z суммасы катары1 жана Z2.

Here’s the calculation of ZRC:

Here’s the calculation of Z2:

And finally:

Zeq = Z1 + Z2 = (55.47 - j 34.45) Ohm = 65.3 д-j31.8° Ohm

according to TINA’s result.


X
сизге да кубанычтамын DesignSoft
эгер муктаждык туура өндүрүм же зарыл колдоо таппай кандай гана жардам болбосун, баарлашууга мүмкүнчүлүк берет.
wpChatIcon