3. Типичный операционный усилитель

Типичный операционный усилитель

Большинство операционных усилителей спроектированы и изготовлены в соответствии с блок-схемой, показанной на рисунке 8.

Типичный операционный усилитель

Рисунок 8 - Типичная конфигурация операционного усилителя

Дифференциальный усилитель и каскад усиления напряжения являются единственными ступенями, которые обеспечивают усиление напряжения. Дифференциальный усилитель также обеспечивает CMRR, что так важно в операционном усилителе. Выход дифференциального усилителя часто соединен с повторителем эмиттера с большим резистором эмиттера, чтобы обеспечить нагрузку с высоким импедансом для дифференциального усилителя, чтобы получить высокий коэффициент усиления. Помните, что усилитель с общим коэффициентом усиления с высоким коэффициентом усиления страдает от гораздо более низкого входного сопротивления, чем усилитель CE с умеренным коэффициентом усиления. Это позволяет использовать усилитель CE с высоким коэффициентом усиления для обеспечения дополнительного усиления. Линейные операционные усилители имеют прямую связь для обеспечения ac усиление. Это также устраняет необходимость в конденсаторе связи, который слишком велик для размещения на микросхеме. Переключатели уровня необходимы, чтобы гарантировать, что выходной сигнал не имеет dc смещение. Операционные усилители можно очень точно смоделировать путем моделирования схем. Мы продемонстрируем это с помощью онлайн-моделирования схем TINACloud.

Упаковка 3.1

Цепи операционного усилителя упакованы в стандартные IC-пакеты, в том числе банки, двойные линейные пакеты (DIP) и плоские пакеты. Каждый из этих пакетов имеет как минимум восемь контактов или соединений. Они показаны на рисунках 9, 10 и 11.

 

Типичный операционный усилитель

Рисунок 9 - Подключение операционного усилителя для упаковки с банками (вид сверху)

Типичный операционный усилитель

Рисунок 10 - Подключение операционного усилителя 14-контактный DIP (вид сверху)

Типичный операционный усилитель

Рисунок 11 - Подключение операционного усилителя для плоского X-контактного разъема (вид сверху)

 

 

 

 

 

 

 

При построении цепи важно правильно идентифицировать различные выводы (обычно они не нумеруются). На рисунках показано расположение штифта 1. в может упаковать на рисунке 9, вывод 1 обозначен как первый вывод слева от выступа, а выводы последовательно пронумерованы против часовой стрелки, если смотреть сверху. в пакет с двумя линиями на рисунке 10, верхняя часть упаковки имеет отступ для расположения контакта 1, а контакты пронумерованы вниз слева и вверх справа. Обратите внимание, что более одного операционного усилителя (обычно 2 или 4) упакованы в один DIP.

В в разобранном виде на рисунке 11, вывод 1 обозначен точкой, а выводы пронумерованы, как в DIP.

Требования к питанию 3.2

Многие операционные усилители требуют как источника отрицательного, так и положительного напряжения. Типичные источники напряжения варьируются от ± 5 V до ± 25 V. На рисунке 12 показаны типичные подключения источника питания к операционному усилителю.

Максимальное колебание выходного напряжения ограничено dc напряжение, подаваемое на операционный усилитель. Некоторые операционные усилители могут работать от одного источника напряжения. Спецификации производителя определяют пределы работы в тех случаях, когда операционный усилитель использует только один источник питания.

Операционные усилители, типичные операционные усилители

Рисунок 12 - Подключение питания

Максимальное колебание выходного напряжения ограничено dc напряжение, подаваемое на операционный усилитель. Некоторые операционные усилители могут работать от одного источника напряжения. Спецификации производителя определяют пределы работы в тех случаях, когда операционный усилитель использует только один источник питания.

3.3 Операционный усилитель 741

Операционный усилитель µA741 показан в схеме, эквивалентной рисунку 13. Он выпускается с 1966 большинством производителей микросхем, и, хотя с момента его появления было много достижений, 741 по-прежнему широко используется.

операционные усилители, типичные операционные усилители

Figure 13 - Операционный усилитель 741

Операционный усилитель 741 имеет внутренняя компенсация который относится к RC-сети, которая вызывает падение высокочастотного амплитудного отклика. Поскольку усилитель имеет высокий коэффициент усиления (порядка 104 в 105 на низких частотах) и потому, что паразитные емкости в транзисторах позволяют паразитная обратная связьоперационный усилитель стал бы нестабильным и колебался, если бы не внутренняя компенсация. Два каскадных разностных усилителя управляют дополнительным симметричным усилителем мощности через другой усилитель напряжения.

Операционный усилитель 741 состоит из трех ступеней: дифференциального усилителя на входе, промежуточного одностороннего усилителя с высоким коэффициентом усиления и усилителя буферизации на выходе. Другая схема, важная для его работы - это сдвиг уровня для dc уровень сигнала, чтобы на выходе могли качаться как положительные, так и отрицательные цепи, смещения, чтобы обеспечить опорные токи для различных усилителей, и цепи, которые защищают операционный усилитель от коротких замыканий на выходе. 741 внутренне компенсируется встроенной конденсаторно-резисторной сетью.

Операционный усилитель дополнительно улучшен за счет добавления большего количества ступеней усиления, изоляции входных цепей и добавления большего количества последователей эмиттера на выходе для уменьшения выходного импеданса. Другие улучшения приводят к увеличению CMRR, более высокому входному сопротивлению, более широкой частотной характеристике, уменьшенному выходному сопротивлению и увеличенной мощности.

Схемы смещения

Несколько постоянных источников можно увидеть в операционном усилителе 741 на рисунке 13. Транзисторы Q8 и Q9 являются источником тока для IEE дифференциального усилителя, образованного Q1, Q2, Q3качества Q4, Транзисторы Q5, Q6качества Q7являются активными нагрузками, заменяющими RC резисторы дифференциального усилителя. Транзисторы Q10, Q11качества Q12 формируют цепь смещения для источников тока дифференциального усилителя. Транзисторы Q10 и Q11 сформировать источник тока Widlar для этой сети смещения с другими транзисторами, действующими как зеркало тока.

Защита от короткого замыкания

Схема 741 включает в себя несколько транзисторов, которые обычно отключаются и проводят только в том случае, если на выходе имеется большой ток. Смещение выходных транзисторов затем изменяется, чтобы уменьшить этот ток до приемлемого уровня. В схеме на рисунке 13 эта сеть защиты от короткого замыкания состоит из транзисторов Q15 и Q22 и резистор R11.

Этап ввода

Входной каскад операционного усилителя 741 необходим для обеспечения усиления по напряжению, сдвига уровня и выхода несимметричного дифференциального усилителя. Сложность схемы вызывает большую ошибку напряжения смещения. В отличие от этого, стандартный резисторный дифференциальный усилитель вызывает меньшую ошибку напряжения смещения. Однако стандартный усилитель имеет ограниченное усиление, что означает, что для достижения желаемого усиления потребуется больше ступеней. Нагруженные резистором дифференциальные усилители используются в операционных усилителях, которые имеют меньший дрейф напряжения, чем 741.

BJT, используемые на входном каскаде, требуют больших токов смещения, что создает проблемы смещения тока. Чтобы уменьшить ошибку смещения тока, другие типы операционных усилителей используют МОП-транзисторы на входном каскаде.

Входной каскад 741 представляет собой дифференциальный усилитель с активной нагрузкой, образованной транзисторами Q5, Q6качества Q7 и резисторы R1, R2качества R3, Эта схема обеспечивает нагрузку с высоким сопротивлением и преобразует сигнал из дифференциального в однополярный без ухудшения коэффициента усиления или коэффициента подавления синфазного сигнала. Несимметричный выход берется из коллектора Q6, Сдвиг уровня входного каскада состоит из бокового PNP транзисторы, Q3 и Q4, которые связаны в общей базе конфигурации.

Использование боковых транзисторов, Q3 и Q4, приводит к дополнительному преимуществу. Они помогают защитить входные транзисторы, Q1 и Q2, против разрушения базы эмиттер. Основание эмиттерного соединения NPN Транзистор сломается, когда обратное смещение превысит 7 V. Боковое смещение транзистора не произойдет, пока обратное смещение не превысит 50 V. Поскольку транзисторы включены последовательно с Q1 и Q2, напряжение пробоя входной цепи увеличивается.

Промежуточная стадия

Промежуточные каскады в большинстве операционных усилителей обеспечивают высокий коэффициент усиления через несколько усилителей. В 741 несимметричный выход первой ступени соединен с основанием Q16 который находится в конфигурации следящего излучателя. Это обеспечивает высокий входной импеданс к входному каскаду, который минимизирует нагрузку. Промежуточная ступень также состоит из транзисторов Q16 и Q17и резисторы R8 и R9, Выход промежуточной ступени берется из коллектора Q17и предоставляется Q14 через разделитель фаз. Конденсатор в 741 используется для частотной компенсации, которая обсуждается в последующих главах этого текста.

Выходной этап

Выходной каскад операционного усилителя необходим для обеспечения высокого коэффициента усиления по току при низком выходном сопротивлении. В большинстве операционных усилителей используется выходной каскад с дополнительной симметрией для повышения эффективности без ущерба для усиления по току. Максимально достижимый КПД для усилителя с дополнительной симметрией класса B составляет 78%. Несимметричный выходной усилитель имеет максимальный КПД всего 25%. Некоторые операционные усилители используют дополнительную симметрию пар Дарлингтона для увеличения своей выходной мощности. Выходной каскад дополнительной симметрии в 741 состоит из Q14 и Q20.

Маленькие резисторы, R6 и R7обеспечить ограничение тока на выходе. Пара Дарлингтон, Q18 и Q19, используется вместо диода в дополнительном симметричном выходном каскаде с компенсацией диода, как описано в главе 8. Расположение пары Дарлингтона предпочтительнее двух транзисторов, соединенных в виде диода, поскольку оно может быть изготовлено на меньшей площади. Источник тока, заменяющий резистор смещения в схеме дополнительной симметрии, реализуется одной частью транзистора. Q13, Транзисторы Q22, Q23качества Q24 являются частью устройства сдвига уровня, которое обеспечивает центрирование выходного напряжения вокруг нулевой оси.

ТОК - 3. Типичный операционный усилитель.