current measurement

INA154 With Gain-Current Shunt Amplifier

By converting the difference amplifier output to a current source using R2, voltage gain can be achieved with R3. R2 compensates the current sensing resistor R2 and increases the current source output impedance. Resistor R5 compensates for the current shunt resistance R4. Perfect compensation for R4 is not possible since the INA154’s internal resistor network is trimmed for precise ratios rather than absolute  values. A buffer amplifier should be used on the output to prevent gain (loading) error. Bypass capacitors are not shown.  (Circuit is created by Neil P. Albaugh,  TI-Tucson)

INA154 With Gain-Current Shunt Amplifier circuit:

INA-154 with Gain Current Shunt Amplifier-blog

Online Simulation of the “INA154 With Gain-Current Shunt Amplifier” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Current Shunt Amplifier

This current shunt monitor circuit allows a current measurement to be made by measuring the voltage drop across a shunt resistor in the “high side” of a power supply. The INA193 is capable of operating with a common- mode voltage of up to +80V and its CMV range is not a function of
its supply voltage.  The INA193 provides a differential voltage gain of 20V/V and its recommended full- scale input  voltage is 100mV.  An INA194 provides a gain of 50V/V and an INA195 provides a gain of 100V/V. R1 & R2 together with C2, C3, & C4 provide differential and common-mode filtering and are recommended for switching power supplies. The two resistors should be carefully matched (1% tolerance) as well as capacitors C3 & C4 (5% or better tolerance). Resistors of 100 ohms will give a gain error of slightly under 2%. (Circuit is created by Neil P. Albaugh,  TI – Tucson)

Current Shunt Amplifier circuit:

Current shunt amplifier-blog

Online Simulation of the Current Shunt Amplifier Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself, or  watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS