Author: Michael Koltai

Creating Subcircuits from Schematics in TINA offline version

In TINA you can convert any schematic diagram into a subcircuit called a Macro.

Watch our tutorial video  to see how to create a Macro in TINA:

Creating subcircuit from Schematics-Macro-blog

 

Download the FREE trial demo of TINA Design Suite and get

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Creating & editing wires in TINA off-line version

Wiring- connecting components with wire- is an important part of creating schematic designs.

Watch our tutorial video about the available wiring tools and tricks in TINA.

 

Tutorial-wires-Blog

 

Download the FREE trial demo of TINA Design Suite and get

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Michael Koltai

www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Feedback Capacitor Low-Pass Filter Pitfalls

Adding a capacitor in parallel with the feedback resistor of an op amp is an easy way of accomplishing low- pass filtering. This technique works quite well in an inverting  amplifier (see the curves below) but not necessarily in a non-inverting amplifier. If the NI amplifier has high gain, the filtering is not bad– but inferior to the inverting case.  As the NI amplifier gain is reduced, the filter effectiveness suffers. In fact, in a gain of +2V/V, there is only 6dB of stopband attenuation. In a voltage-follower   (gain of +1V/V), there is no low- pass filtering at all! In each amplifier, the value of R2 was stepped logarithmically from 100 ohms to 100k.\e(x,2) (Circuit is created by Neil P. Albaugh, TI-Tucson )

Circuit for Demonstration of Pitfalls related with the Feedback Capacitor in Low-pass Filters 

Feedback Capacitors Filter Pitfalls-blog3

Demonstration of Pitfalls related with the Feedback Capacitor in Low-pass Filters circuits

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself, or  watch our tutorial video to learn how to create and analyze this circuit with TINA off-line version now under Windows 10  or on-line with TINACloud.

You can send this link to any TINACloud customers and they can immediately load it by a single click and then run using TINACloud.

Download the FREE trial demo of TINA Design Suite and get

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Creation and Simulation of a 1kV High Common Mode Voltage Difference Amplifier circuit with TINA offline version or online with TINACloud

Achieving a high common mode voltage differential amplifier requires a very high attenuation resistor network. To minimize op amp input offset voltage and drift errors, an autozero type is used– OPA735.  An OPA335 can be used on a 5V supply. Common- mode rejection is critically dependent on the ratio matching of R3:R2 & R4:R1. These should be matched to extremely tight tolerances. Power dissipation in R3 & R4 are significant. Bypass capacitors are not shown.  (Circuit is created by Neil P. Albaugh  TI – Tucson)

High Common-Mode Voltage Difference Amplifier circuit:

High-Common mode Voltage Difference amplifier-blog

Creation and Simulation of a 1 kV High Common-Mode Voltage Difference Amplifier circuit

Watch our tutorial video to learn how to create and analyze this circuit with TINA off-line version  or on-line with TINACloud

Also if you download  the FREE trial demo of TINA Design Suite you can not only find and run this circuit but you will also get

    1. An immediate 20% discount from the offline version of TINA Design Suite
    2. Free license for your second computer, laptop etc.
    3. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world)

Click here  to download the FREE trial demo of TINA  Design Suite

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Creation and Simulation of an OPA569 Laser Driver Circuit

The “OPA569 Laser Driver” circuit provides voltage- controlled constant- current biasing of a grounded- anode laser diode by using a negative supply voltage and a positive control voltage. As shown, the OPA569 op amp provides an output current of 500mA per volt input. Output is current- limited to 2A by R2. Frequency compensation is provided by C3 R3. This circuit takes advantage of the unique topology of the OPA569; it does not require a shunt resistor to measure its output current. This amplifier provides an output monitor current from pin 19 that is 1/475 th of its output current. This current is used as negative feedback to the amplifier’s inverting input (pin 5). A constant- current output is derived by this feedback. Since no shunt resistor is required to measure output current, there is no reduction in output voltage compliance due to shunt resistor voltage drop and this circuit can swing its output voltage very close to its supply rail. This increases efficiency and reduces heat sinking requirements. In fact, supply voltage can be reduced to 3.3V for most laser diodes. The OPA569 features both a Current Limit (pin 4) and a Thermal Overtemp (pin 7) flag. These flags can be used to protect the amplifier and the Enable (pin 8) can be used to digitally control its status. (Circuit is created by Neil P. Albaugh, TI – Tucson)

OPA569 Laser Driver Circuit:

OPA569 Laser Driver for camtasia5

Creation and Simulation of an OPA569 Laser Driver Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself, or  watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Do you know that TINACloud also has an even more powerful downloadable offline version called TINA Design Suite?
TINA Design Suite is fully compatible with TINACloud and you can create, edit or run the same circuits in both systems. You can also easily exchange circuits between TINA Design Suite and TINACloud.

Download the FREE trial demo of TINA Design Suite and get

  1. One year free access to TINACloud (the cloud-based, multi-language, installation-free online version of TINA now running in your browser anywhere in the world.)
  2. An immediate 20% discount from the offline version of TINA
  3. Free license for your second computer, laptop etc.
Click here to download the FREE trial demo of TINA

 

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Creation and Simulation of a Capacitance Multiplier Circuit

A “capacitance multiplier” circuit can increase the effective value of a small capacitor C1 to a much larger value. The capacitance seen at Vout is: Cout = C1 * R1/R3. Note that this circuit is only for a ground- referenced capacitor. Rs = R3.  The output capacitance can be verified by placing an AC source in series with a resistor tied to Vout and running an AC frequency response analysis. As seen in the result below, the 100pF capacitor has been multiplied by 1,000.  Bypass capacitors are not shown.  (From a NSC app note) /Circuit is created by Neil P. Albaugh  TI- Tucson/

Capacitance Multiplier Circuit:

Capacitance multiplier-YT2

Creation and Simulation of a Capacitance Multiplier Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself, or  watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Time-to-Voltage Converter

Applications such as rangefinders and ballistic chronographs require a high resolution measurement of time. This can be a time period of a few hundred nanoseconds to a few milliseconds. This is an analog circuit that can convert a time period to a voltage with high linearity and high resolution. In principle, a current source is used to charge a capacitor for the time interval and then the voltage across that capacitor is measured. A REF200 precision current source is used to furnish 200uA to a fast SPDT analog switch, represented by SW1 & SW2. This switch steers the current into ground or into a 100pF capacitor C2. U1 is simply a high- precision buffer amplifier for the voltage on C2. SW3 is a reset that zeros the voltage on C2. Initially, SW3 is open and SW2 steers the 200uA to ground until a START command is received; SW2 then opens and SW1 closes, steering the current into C2. The capacitor charges until a STOP command is received;  SW1 then opens and SW2 closes. The voltage on C2 is proportional to the time between START and STOP; scale time range is determined by the value of C2 so this capacitor should be high quality. A polystyrene or NPO (COG) ceramic is recommended for C2. A small DMOS SD211 can be used for SW3.  (Circuit is created by  Neil P. Albaugh, TI-Tucson)

Time-to-Voltage Converter circuit:

 Time-to voltage converter-blog3

 

Online Simulation of a Time-to-Voltage Converter circuit:

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Load Cancellation Circuit

Amplifier output loading can be reduced or even eliminated by use of a load cancellation circuit such as that of U2. Without load cancellation, the inverting unity- gain op amp U1 output current is a function of its input voltage Vin and its 1k load resistance RL. At Vin = 1V, both AM1 (U1 output) and AMload (load current) = -1mA. With compensation adjusted for 100%, the load current is furnished entirely by the compensation circuit. Thus the output of U1 essentially sees an “open circuit”. Rc controls the degree of load current compensation. Bypass capacitors are not shown. (Circuit is created by Neil P. Albaugh,  TI-Tucson)

Load Cancellation Circuit:

Load cancellation circuit-blog1

 

Online Simulation of a Load Cancellation Circuit:

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud  and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Two OPA569 Current Sources in Parallel

This circuit provides voltage- controlled constant- current biasing of a grounded- cathode laser diode. As shown, the OPA569 op amp provides an output current of 500mA per volt input. The OPA569’s output is current- limited to 2A by R3 & R4. Bypass capacitors are not shown. This circuit takes advantage of the unique topology of the OPA569; it does not require a shunt resistor to measure its output current. This amplifier provides an output monitor current from pin 19  that is 1/475 th of its output current. The voltage developed across R1 & R2 are used as negative feedback to the amplifier’s inverting input (pin 5). A constant- current output is derived by this feedback. Since no shunt resistor is required to measure output current, there is no reduction in output  voltage compliance due to shunt resistor voltage drop, this circuit can swing its output voltage very close to its supply rail. This increases efficiency and reduces heat sinking requirements. In fact, supply voltage can be reduced to only a few hundred mV above the load voltage.
The OPA569 features both a Current Limit (pin 4) and a Thermal Overtemp (pin 7) flag. These flags can be used to protect the amplifier and the Enable (pin 8) can be used to digitally control its status. (Circuit is created by  Neil P. Albaugh,  TI-Tucson)

Two OPA569 Current Sources in Parallel Circuit:

Two OPA569 Current Sources in Parallel

Online Simulation of the “Two OPA569 Current Sources in Parallel” Circuit:

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Shunt Amplifier with Offset Output

By reducing the +12V common- mode voltage, an INA122 can sense the voltage drop across a shunt resistor while being powered by the same +12V power supply.  Rg controls the voltage gain of U1. This circuit is scaled for a 2.5V output range centered around +1.25V; thus this amplifier can measure bidirectional shunt current. An INA122 does not feature a R-R output so the sinking current is limited to about -0.3A. This can be useful where battery current must be monitored while it is being charged or discharged. Bypass capacitors are not shown. (Circuit is created by Tucson)

Shunt Amplifier with Offset Output circuit:

 Shunt amplifier with offset output

Online Simulation of a Shunt Amplifier with Offset Output Circuit:

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit yourself or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS