Bridge Sensor Amplifier With RFI Filter

This high accuracy bridge sensor amplifier is based on the autozero INA326 instrumentation amplifier. Bridge sensors are commonly found in pressure transducers, weigh scales, strain guages, and load cells. As shown, the amplifier gain is 200V/V. Capacitors C1 & C2 form a 2nd order 1kHz low- pass filter to reduce noise. The INA326 is virtually free of 1/f noise. R8 & R9 together with C4, C5, & C6 form an RFI filter. For best filtering, make R8 = R9 and C5 = C6 as close as possible. C4 = C5 * 10. In battery- operated applications, an INA327 with shutdown is recommended. For operation over -40C to +125C, use an INA337. (Circuit is created by Neil P. Albaugh,  TI-Tucson)

The “Bridge Sensor Amplifier With RFI Filter” circuit:

bridge sensor amplifier with RFI filter blog

Online Simulation of the “Bridge Sensor Amplifier With RFI Filter” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

INA154 With Gain-Current Shunt Amplifier

By converting the difference amplifier output to a current source using R2, voltage gain can be achieved with R3. R2 compensates the current sensing resistor R2 and increases the current source output impedance. Resistor R5 compensates for the current shunt resistance R4. Perfect compensation for R4 is not possible since the INA154’s internal resistor network is trimmed for precise ratios rather than absolute  values. A buffer amplifier should be used on the output to prevent gain (loading) error. Bypass capacitors are not shown.  (Circuit is created by Neil P. Albaugh,  TI-Tucson)

INA154 With Gain-Current Shunt Amplifier circuit:

INA-154 with Gain Current Shunt Amplifier-blog

Online Simulation of the “INA154 With Gain-Current Shunt Amplifier” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Single Supply Absolute Value Amplifier (2)

The rail- to- rail input and output characteristics of these CMOS op amps allow them to swing very close to their supply rails–+5V and ground. By forcing U1 to operate as an inverting amplifier when the input voltage is negative (by the “ideal clamp” circuit of U2 and D1) and allowing it to operate as a normal noninverting amplifier when the input voltage is positive, op amp U1 acts like a perfect rectifier. This design can be biased above ground, handy in single supply circuits referenced to V+/2. This absolute value amplifier has unity gain an input range of within a few mV of -5V to +5V. For a faster amplifier, use an OPA354 for U1 & U2 and a small Schottky diode for D1. The dual amplifier versions, OPA2364 or OPA2354 can also be used. (Circuit is created by David Jones & Neil P. Albaugh,  TI- Tucson)
Single Supply Absolute Value Amplifier (2) circuit:
Absolute-value amplifier single-supply 2-blog

Online Simulation of the “Single Supply Absolute Value Amplifier (2)” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Capacitive Load Demo

This “Capacitive Load Demo” circuit shows the utility of Tina- TI’s “Control Object” function. The series compensation resistor R1 is  stepped in values of 10, 30, and 50 ohms. The effect on the op amp’s overshoot is shown clearly in the plot below. Likewise, the compensation capacitor C1 or the load capacitance CL can be stepped in value and the effects evaluated. (Circuit is created by Neil P. Albaugh  TI – Tucson)

Capacitive Load Demo circuit:

Capacitive load demo-blog

Online Simulation of the “Capacitive Load Demo” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Bootstrapped Input For High Impedance

Applying a small amount of positive feedback to the input bias current return resistor R3 effectively raises the apparent input resistance seen by an input signal. Without feedback the input resistance is R3 (1M) in parallel with the input resistance of U1 (1E13 ohms); positive feedback applied through the voltage divider R1 & R2 multiplies the effective input impedance of R3 by creating a smaller differential voltage across the resistor. The pole frequencies of various feedback fractions are illustrated by the AC analysis below. A piezoelectric transducer or condenser microphone is modeled by VG1 in series with capacitor C1. Without bootstrapping (positive feedback), the low- frequency cutoff is 1.8kHz but by placing a 100 ohm resistor at R1, this cut-off frequency drops to 2Hz, illustrating the increased Rin. This does not come without penalty, however. Adding bootstrapping also increases the noise gain of the op amp, multiplying its Vos, drift, and noise. Adding a LARGE capacitor in series with R1 can eliminate the amplified DC offset and drift but the low frequency noise will still suffer. Approach large + feedback fractions with caution; instability and susceptibility to external noise pickup can result. (Circuit is created by Neil P. Albaugh,  TI – Tucson)

Bootstrapped Input For High Impedance circuit:

Bootstrapped input for high impedance-blog

Online Simulation of the “Bootstrapped Input For High Impedance” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Voltage-Controlled Current Source Circuit

This circuit is a Howland voltage-controlled current source. It is scaled to provide a 20mA output current with a +1V input voltage. This type of current source can be very useful in industrial applications. A R-R output op amp with an input common-mode range that includes its negative supply rail, such as an OPA251, is required for single- supply operation. For V+ supply over 12V, use Zetex ZXTN2010G (60V, 3W, SOT223, HFE = 100 min). Re- scaling this circuit with other transistors can result in output current capability of a many amps. (Circuit is created by Neil P. Albaugh,  TI – Tucson)

Voltage-Controlled Current Source Circuit:

Voltage-controlled current source circuit-blog

Online Simulation of the “Voltage-Controlled Current Source” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

10Hz Active Low-Pass Filter

This “10Hz Active Low-Pass Filter” circuit offers a very low frequency cutoff and it has the ability to operate on single supply voltages. As shown, this is a second- order unity- gain Butterworth low- pass filter using a Sallen- Key topology. One advantage of a Sallen- Key LPF over one configured as a Multiple Feedback LPF is that it is non-inverting–therefore an input signal with a positive DC offset can be accomodated. A low input bias current op amp is required for a very low frequency low- pass filter as the R values are necessarily high. Thermal noise contributed by these resistors, however, can be reduced by reducing their values by an order of magnitude together with increasing the capacitor values by an order of magnitude. Resistor thermal noise will thereby be decreased by the square- root of 10.  (Circuit is created by Neil P. Albaugh,  TI – Tucson )

10Hz Active Low-Pass Filter circuit:

Active low-pass filter-blog

 

Online Simulation of the “10Hz Active Low-Pass Filter” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

High-Capacitance Line Driver

Capacitive loads invite amplifier instability by reducing phase margin. Instability can be prevented by isolating  the load capacitance from the amplifier output by a small resistor R3. To eliminate a voltage drop error when current is drawn through that resistor, DC feedback is sensed on the load side of R3. High- frequency feedback is provided by C2. The load capacitance was stepped from 100pF to 1uF and the results are shown below; no gain peaking is evident. Bypass capacitors are not shown. (Circuit is created by Neil P. Albaugh  TI-Tucson)

High-Capacitance Line Driver circuit:

High-capacitance line driver-blog

 

Online Simulation of the “High-Capacitance Line Driver” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Simple Absolute Value Amplifier

The rail- to- rail output characteristics of these CMOS op amps allow them to swing very close to their negative supply rails–ground. By using a non-inverting amplifier U1 to swing only positive (due to its not being capable of swinging below ground), this op amp acts like a perfect rectifier. For positive inputs, the input to the inverting amplifier U2 sees a voltage that is equal to the voltage on its non-inverting input (from follower U1), therefore the net gain of U2 is +1V/V. For negative inputs, the + input to the inverting amplifier U2 sees a voltage that is as close as U1 can swing to its negative supply rail (ground); therefore the net gain of U2 is -1V/V. This output of U1 is amplified by the noise gain of U2 and appears as an offset error on the output of the absolute value amplifier. This is the primary limitation to accuracy with very small input signals.This absolute- value amplifier has a gain of +1V/V and has an input range of +/- a few mV to -10V to +10V. (Circuit is created by Thomas Kugelstadt & Neil P. Albaugh, TI – Tucson)

Simple Absolute Value Amplifier circuit:

Simple absolute value amplifier

Online Simulation of the “Simple Absolute Value Amplifier” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video! 

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS

Low-Pass Filter With Very Low DC Offset

This filter’s unusually low DC offset is due to the use of an OPA380 at U1. While this amplifier is usually employed as a transimpedance amplifier, it can also be used as an inverting op amp. In this configuration it provides wide bandwidth with extremely low input offset voltage and drift.

The OPA380 is a monolithic 85MHz GBW CMOS op amp with an internal auto- zeroed integrator. This integrator forces the high-speed op amp input offset and drift to virtually zero.

This 100kHz “Low-Pass Filter With Very Low DC Offset” circuit is a two- pole multiple- feedback filter with a Butterworth response. This filter has a DC gain of 1V/V or 0dB. Above the  -3dB corner frequency its response is close to theoretical up to 10MHz; above this frequency the finite GBW of U1 prevents much additional filter rolloff. An OPA380 is not suitable for a Sallen- Key active filter; that topology requires an op amp to be used as a non-inverting amplifier. The OPA380’s non-inverting input is a very low bandwidth integrator input. (Circuit is created by Neil P. Albaugh, TI – Tucson )

“Low-Pass Filter With Very Low DC Offset” Circuit:

LPF with very low DC offset-blog

Online Simulation of the “Low- Pass Filter With Very Low DC Offset” Circuit

The great feature of the TINA circuit simulator that you can analyze this circuit immediately with TINACloud the online version of TINA. Of course you can also run this circuit in the off-line version of TINA.

Click here to invoke TINACloud and analyze the circuit, or watch our tutorial video!

You can send this link to any TINACloud customers and they can immediatelly load it by a single click and then run using TINACloud.

Michael Koltai
www.tina.com

Share and Enjoy

  • Facebook
  • Twitter
  • Delicious
  • LinkedIn
  • StumbleUpon
  • Add to favorites
  • Email
  • RSS